

iExec: Towards Decentralized Cloud Computing

Seminario Ugo Bordoni Rome, Italia, 23 Mai, 2019

Gilles Fedak, Dr. habil. Researcher, Entrepreneur gf@iex.ec

Agenda

Historical view of distributed/volunteer/Grid computing

Blockchain-based decentralized marketplace

iExec architecture

Use-cases

Conclusion

From **distributed** to **decentralized** computing

A not so new idea...

We described a computational model based upon the classic science-fiction film, **The Blob: a program** *that started out running in one machine, but as its appetite for computing cycles grew, it could reach out, find unused machines, and grow to encompass those resources.* In the middle of the night, such a program could mobilize hundreds of machines in one building; in the morning, as users reclaimed their machines, the "blob" would have to retreat in an orderly manner, gathering up the intermediate results of its computation. (This affinity for night-time exploration led one researcher to describe these as "vampire programs.")

(John F. Shoch and Jon A. Hupp, 1982)

Evolution of distributed computing 90's-00's

P2P

Free to join Anonymous Unmanaged Scalable Resilient File sharing

Grid Computing network of clusters/HPC Managed Identity/security High Throughput Computing

Cloud

Commercial Virtualization IaaS/PaaS/SaaS Web application Big Data

Desktop Grid: loosely coupled distributed computing infrastructures

• managed, secure, scalable, programmable, efficient, resilient

Blockchain and Dapps

1st generation blockchain (Bitcoin)

• Distributed Ledger: immutable, secure, consensus

2nd generation blockchain (Ethereum)

• programmable: smart contract, tokens

Dapp (decentralized application)

• autonomous, censorship resilient, unstoppable

Decentralized marketplace (DeX)

Emerging solution for implementing decentralized exchange to trade cryptocurrencies

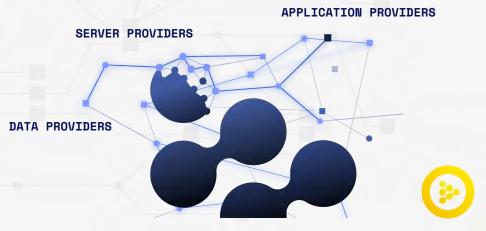
Implemented on top of public blockchain

- direct P2P interactions
- no trusted party: consensus on-chain

GOMARKETS

Free market: anyone can join, as long as they accept the governance rules

Decentralized cloud computing


Blockchain-based Decentralized Cloud Computing

- **Decentralized marketplace** for computing resources (servers, applications, datasets)
- Use Ethereum to advertise/provision computing resources
- Providers can interact in a P2P way, without central authority

Why Does it Matter ?

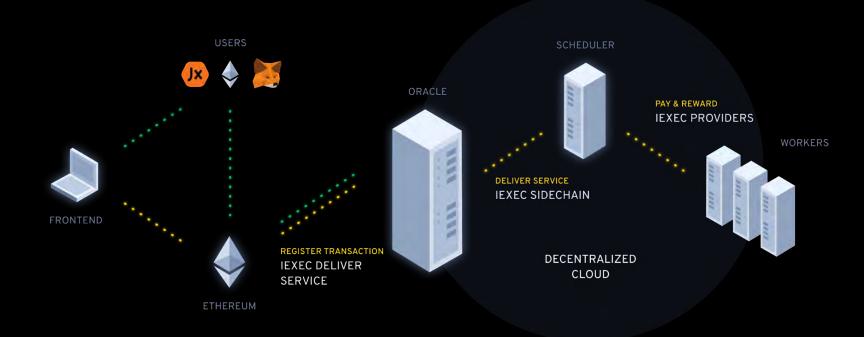
- Decentralized applications need an infrastructure
- Cheaper, greener, more efficient than traditional centralized Cloud

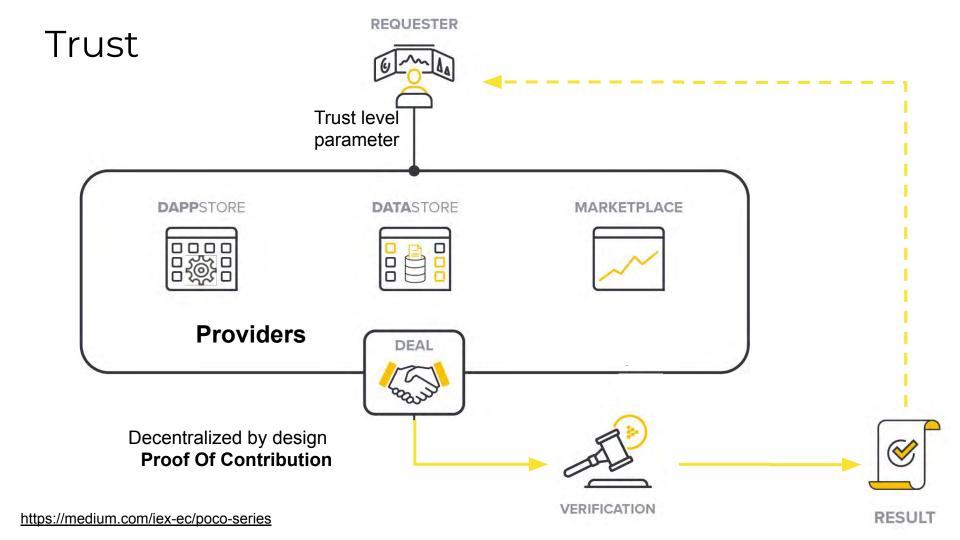
For Which Applications ?

- Blockchain-based Distributed Application (Dapps)
 - iExec provides access to off-chain computing resources:
 - servers (CPU & GPU), applications, data-sets
- Legacy applications
 - High Performance Computing (HPC), Big Data

• Simulations, 3D rendering, bio-medical research, analytics, machine learning, finance, business intelligence scientific computing, etc...

- Emerging distributed applications
 - when the centralized Cloud becomes the bottleneck !
 - IoT + Big Data, Fog/EDGE Computing, micro-services, distributed machine learning, ambient IA, VR,, and more...


The iExec Token: RLC


Token usage

- The RLC Token is the only way to access the iExec decentralized cloud
- Providers are paid with RLC
- Allows to build incentives in the network.

• Issued on main net on April 2017

Provides Dapp an Infrastructure for Off-chain Execution

Marketplace for Computing Power

Allows to trade **computing power as a commodity**

Allows companies and individuals to **monetize their servers/PCs**

RLC/WORK

Price per task execution paid in RLC

😓 iExec Marketplace

xs	S	М	L	XL	
TEE	CUDA	Trust			
nRLC/Task					

V	NMA	WWW	MMMMMM	

	-			
I٧	Tra	1C	es	

ID	Price	Time	Workerpool	Volume
0xd18f64e536df9cfee4c85ae2b790fbc	10	14:18:00	0xCa7c0e9a96666bC3636ff3d3E8480	1
0xd71b06b8ea058192a78036b2cab9	10	17:45:48	0xCa7c0e9a96666bC3636ff3d3E8480	1
0xf5155166a1e7f2c06965ec0c001010	10	17:27:24	0xCa7c0e9a96666bC3636ff3d3E8480	t
0xdd4b1ca055a547a46530a0ccec524	10	07:37:04	0xCa7c0e9a96666bC3636ff3d3E8480	1
0x9c6c4214c7ce1a498e1a51fbca828	10	00:32:44	0x9B919d74f8Ef49C33343AD305695	1
0x1a5c8181672ba73c08f94313399c9	10	00:27:04	0xCa7c0e9a96666bC3636ff3d3E8480	1

Order Book					Recent Tra	des			
Hash	Price	Worker	Trust	Volume	ID	Price	Time	Worke	Volume
0xd3ed3	13	0xCa7c0	1		0x5c17	33	10:11:40	0x9B9	1
0x85df95	13	0xCa7c0	1		0x153b	11	10:08:52	0xCa7	1
0x2f28a8	10	0xCa7c0	1		0x862d	28	09:42:24	0x9B9	1
0xef885f	10	0xCa7c0	1		0xf8f8d	16	09:40:20	0xCa7	1
0xe26e5	10	0xCa7c0	1		0x87f5	10	09:14:12	0x9B9	1
0xeb079	10	0xCa7c0	1		0x67c2	18	09:12:16	0xCa7	1
0x8b1fdb	10	0x9B919	1		0xdc56	27	08:47:52	0x9B9	1
0x9e4da	10	0xCa7c0	1		0x0979	18	08:44:28	0xCa7	4
0x0828a	10	0xCa7c0	1		0x8285	12	08:21:52	0x9B9	
		rice: 33 nRLC	A.		0x5c05	19	08:19:52	0xCa7	1
					0xbede	37	08:00:44	0x9B9	1
0x3ce83	7	0xF048e	0		0x8ba4	15	07:57:32	0xCa7	1
					0xfa04	37	07:30:24	0x9B9	1
					0x4f2e	11	07:27:20	0xCa7	1
					0xdaab	25	07:05:24	0x9B9	1
					0x8ab9	17	07:01:20	0xCa7	1
					0xa7a4	13	06:39:28	0x9B9	-
					0xf580	14	06:37:32	0xCa7	1
					0x2b91	25	06:15:16	0x9B9	ŧ

0x444e..

Request Order Hash:

Volume:*

Workerpool address:

06:10:44

Sell computation at market price

0xCa7..

0x3ce83e3afcb2ba48d42703d48

Reques... Hash Price Trust Volume

Fill Market Order

Order Hash: *	0x0828aa3c7446f21464d4219da7c2fa				
Dapp Address:*	or name	19			
Dataset Address:*	for name	19			
Work Params:*	{"0":""}				

Advanced parameters

Proof-of-Contribution

staking + reputation + result certification:

- A confidence threshold is associated with each requested execution
- Workers have a reputation
- Before executing a task, workers commit a security deposit (stake)
- The execution confidence threshold is computed by comparing results and computing a function of the credibility and stake
- Task is duplicated as long as the confidence threshold is not met
- Workers who computed an erroneous results loose their stake
- Workers who correctly compute gains the payments + the losers' stake
- Reputation is adjusted

iExec End-to-End Trusted Execution with Intel SGX

Enclaves: Confines execution and data within a encrypted environment: no one can access/tamper the execution

- SDK that provides full end-to-end privacy preserving computation
 - for application/input/results
 - guarantee execution integrity
 - provide on-chain enclave execution attestation

Use Cases

The data renting concept

Data

• pretrained model?

Value +++

• dataset

INPUT

Application

• ML framework

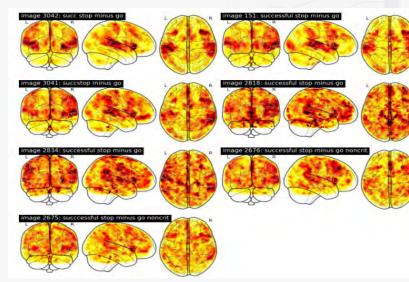
Value +

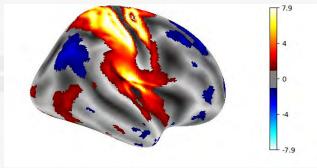
- load model
- call prediction function

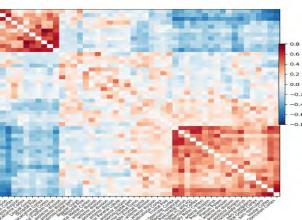
PROCESSING 💿

Data Wallet: Monetize AI model

Possible thanks to Trusted Execution




Use-case: Semantic Image Segmentation with Convolutional Neural Net


Nilearn: a framework from Neuro imaging

Demo RSAConference 2019: brain scans with diagnostics.

Privacy preservation for data and requester.

Conclusion

Decentralized Cloud Computing

iExec:

- Stack of decentralized technologies to trade computing resources
- Tokeneconomics

Perspective:

• Fog/Edge infrastructure

