

5G + AI + BC : A Crossroad to the future Florence School of Regulation — Fiesole, November 8, 2018

Antonio Sassano

A technological crossroad

۰

۲

- **BChain** efficiency requires **fast end-to-end networks** (5G low latency)
- 5G network design/management requires complex AI algorithms
- Al algorithms are empowered by the availability of massive data (5G IOT)
- IOT transactions are empowered by micropayments (BChain transactions)
- Al algorithms can control autonomous «things» only with 5G networks (LL)
- Medium Access and Clustering of massive IOT ensured by AI
- Massive (IOT) data market (integrity, ownership) ensured by BChain
- AI Algorithm Accountability/Transparency increased by Smart Contracts

The purpose of the following slides and ... a disclaimer

- BlockChain Era is at its very beginning
- Research, Ideas and Proofs of Concept are exploding
- No «well defined» BlockChain Theory exists
- To (seriously) discuss about its *future and consequences* we have to grasp its *economic and mathematical* structure

... I am still studying

- Today I will try to answer the following questions:
- What is a BlockChain?
- How are we moving beyond the first generation (Bitcoin)
- The Structure of WEB 3.0 : Private or Public BlockChain?
- Two examples: Data and User Attention

The Distributed Ledger (BlockChain)

This is the Open, Public, Permissionless, Borderless, Distributed Ledger

The Bitcoin Experiment and its drawbacks

- Bitcoin is a (distributed) application using the *Nakamoto BlockChain*
- A successful DAPP: No hacking since its birth (2009)
- A brilliant «proof of concept». It works! ... but does not scale

Two serious drawbacks of Mining (rewarded creation of new blocks):

2. Reward to Computer Power (PoW)

- (Geographical) Concentration of Miners
- 5 main Mining Pools (74% in China)
- Specialized HW. Huge waste of energy
- Few «points of failure» (Cybersecurity at risk)
- Possible a 51% Attack!

The New Generation: No Mining, No Forks ... Green

- New BlockChain Technology: Beyond Proof of Work
- No Mining and no «embedded» cryptocurrency (BlockChain w/o Bitcoin)
- No need of concentrated computing power
- Out of Chain Transactions (State Channels): Lightning, Raiden, Polkadot,...
- Sophisticated Consensus Rules rule out Forking
 - Fast Bizantine Agreement (BA*), Cryptographic Sortition (ALGORAND)
 - Directed Acyclic Graph (IOTA)
- New generation BlockChains (potentially) scale (ongoing experiments)

IOTA TANGLE: Directed Acyclic Graph

- Approved Txn → Node with In-degree at least 1;
- Each new transaction validates only two «older» transactions
- Weight of a transaction = PoW (or 1!)
- Cumulative weight of a transaction = Sum of Weights of Predecessors
- Finality? High Cumulative Weight
- No (Native) Smart Contracts!

Theorems:

- Tips do not «grow» (stability)
- Resistant to:
 - Double Spending
 - Parasite Chain
 - Quantum Computing
 - ...
- Announced: October, 21 2015
- Market Cap: 1,362 B\$

The main takeaway

The **Open, Public, Permissionless, Borderless, Distributed Ledger is (can be) totally disruptive for ALL Central Trust Based Industries**

Blockchain Potential Applications & Disruption

The blockchain is radically changing the future of transaction based industries

Source: IBM

(Only) Public BlockChains are Trustable and Secure

- Only in the Public BlockChain ALL stakeholders decide
- Trust and Security High «by design». Efficiency needs research (Algorand)
- If some stakeholders «do not decide» we have a Private BlockChain

The race to shape Web 3.0 is on

SEPTEMBER 18, 2015 BY ARVIND NARAYANAN

... and is an information war

enterprise Florence School of Regulation, November 8, 2018

The «quantum leap» is the Public BlockChain

The Internet Advertising BlockChain (BRAVE)

Present ecosystem	BAT token ad payments	
User frustration over loading time	Fast loads	
Walled gardens	Free software, open source infrastructure	
Bandwidth wasted	Low bandwidth overhead	
Screen clutter	Uncluttered screen	
Irrelevant ads	Ads tuned to user interests	
Security issues	No malware	
Viewability problems/attribution	Secure attribution/attention score	A <i>messy</i> market
Advertiser uncertainty about delivery	Perfect delivery certainty	•
CPM/click based	Attention-based	
Reader attention not valued	Reader is paid for attention	
Publisher revenues lowering	Larger publisher revenues	
Expensive ad buys due to middlemen	Efficient ad buys	
Complex/expensive viewability metrics	Simple/free viewability metric	
User's privacy violated	Perfect user privacy	
	A dy ovtio ov	

- Ethereum Smart Contract
- «Tokenized» Attention
- BAT: Basic Attention Token
- Paying User Attention
- ICO: May 31, 2017
- Market Cap: 257 MEuro

BlockChain and Internet of Things

• The IOT ecosystem requires:

- Ability to automatically exchange value (\$) for data
- Proof of Ownership of exchanged data (data market)
- Data Integrity and Reliability (tamper proof data, security)
- Widespread interoperability (not silos of trust)
- Billions of txn/sec each worthing nano\$ (not centralized trust)

A technology fits the needs → (Open) BlockChain

- BlockChain matches the natural *distributed architecture of IOT*
- **Data Integrity**: BlockChain is secure «by design»
- **Smart Contracts** fit the automatic interactions among «things»
- Micropayments and data exchange are naturally implemented
- DAPP Streamr : Smart Contracts (Ethereum) manage (IOT) data inflow and outflow. Data stored in a Distributed File System (IPFS)

The Data Market (STREAMR)

- «Tokenized» Data
- DATACoin: Data Token (Value)
- Paying <u>User Data</u> and <u>Broker TransShipping</u>

BlockChain: a Hype or Here to stay? A short story

- The History of Internet:
 - The dream: A resilient network without a C&C Center
 - The (once) Big Platforms Attempt ('80-'90) «We are the secure, fast and efficient network»:
 - DNA (DECNet Internet 17k Nodes in 1989)
 - SNA (IBM), DSA (Honeywell)
 - TCP/IP and the WWW made all of them obsolete!
- Here we are again:
 - The dream: A resilient «Book of transactions». No Central Trust
 - Everyone can access, read and write on the Book
 - <u>The Big Platforms Attempt:</u> (thousands of) Private BlockChains
 - Private: some can read, few authorized stakeholders can write
 - Thousands of different and not interoperable «castles of trust»
 - Do you trust more your competitors or mathematics?

- Public, Open BlockChain will likely make all of them obsolete.

5G revolution: not only speed, latency and coverage

5G not (only) a new Radio Interface (as GSM, UMTS, LTE)

The network becomes *«virtual» and flexible (Cloud)*

- A Software Defined Network (modems, routers, servers, interfaces,...)
- Independent and autonomously managed «slices»
- Computing moves «closer» to the user (*Edge Computing*)
- Each application/market (Vertical) has its own «slice»

5G finally turns Internet into a Network of Networks

- Not a different network for each service (Telephone, TV Broadcasting, Satellite, Utilities, Games, Roads, Cars, «Things»)
- But ... different networks connected to empower new or more efficient services. (Self Driving Cars, Smart Factories, Logistics, Energy Management, Entertainment, Games, Health Care, etc.)

- Optimization and reduction of «roll out» costs
- New services driven by billions of measured data
- Increased efficiency and «decentralization»
- In a sentence: <u>The Network is Service-Defined</u>

Networks are Service-Defined

- The desired Quality of Service defines (by means of Al algorithms) the struture of the «virtual slice»:
 - Self Driving Vehicles:

3 SALUTE E BENESSERE

- Distributed Computing Power (Edge computing);
- Vehicle sub-nets (V2V e V2X)
- High number of vehicles, low latency and blind spots coverage

SLICE 1	Edge Computing	Vehicles	Capacity/Latency Fiber To the BS	<1Ghz Wireless	Mid-High Band Wireless (FWA)
---------	-------------------	----------	-------------------------------------	----------------	---------------------------------

– <u>Video Broadcasting</u>

- Content Distribution Networks
- High coverage and «downlink» capacity (4/8k, augmented reality),

SLICE 2	CDN	Capacity/ Jitter Fiber	<1Ghz Mhz Wireless	«Broadcasting» Towers	3 GHz Wireless (FWA)
---------	-----	----------------------------------	-----------------------	--------------------------	-------------------------

– <u>Smart-Grid – e-Health</u>

- Meter sub-nets (sensors, smart-meter). High density.
- blind spots coverage, <u>low latency & low volumes</u>

5G: Software Defined Network → Algorithm is king

Regulatory Issues: Net Neutrality, Parity of Access

- If the 5G Network is Service-Defined then the very concept of Net Neutrality takes on a new meaning:
 - Every «virtual slice» manages the traffic in a different way
 - Every service is a «specialized service» (def. Berec)
 - The sentence «all packets are created equal» loses its meaning

On the contrary the **Communication Service Provider (CSP) who** manages the *«vertical slicer»* and the *«service orchestrator»*.

- Acts on «standard» ed interoperable networks (Over The Top «role»)
- Defines the virtual resources to assign to the service providers («access» to the rete 5G);
- Uses (is?) Slicing and Orchestration Algorithms.
- Mandatory (and hard) an ex-post Parity of Access test
- Who will play the role of CSP? <u>Her Neutrality is crucial</u>
- Mandatory the separation between CSP and Service provider

Investments in the 5G Networks (in Italy)

- Who will invest in the 5G networks?
 - The incumbent Telco (4G evolution) for sure .. but also ...
 - Neutral Hosts
 - ARQIVA (UK): 1500 Broadcasting towers; 8000 BS; Reti FWA / LPWA (IoT)
 - TDF (FR): Fiber Network (5000 Km); 12.000 Towers (BS and Broadcasting)
 - 2ITowers(IT): Fiber Network (6000 Km); 2300 Torri HTHP; 1000 BS; LPWA (IoT)
 - Open Fiber(IT): FTTH, Fiber to the Base Station
 - Networks owned by the vertical tenants:
 - ENEL: «Smart Meters»
 - ANAS: «Smart Roads»
 - And then... Vehicles, Wearable Meters, «things»
 - Wireless network operators (es. FWA)
- And who will get (and pay) the frequencies ?
 - The answer is **now** (after the 5G Auction) **easy**: **the incumbent Telcos**
 - The 5G revolution is crucial for their future
 - New ideas of PPP and shared investments needed

US Initial Approach

Different Initial Approaches to 5G

T··Mobile·

5G NATIONWIDE COVERAGE

- Building 5G network in 30 cities in 2018, nationwide in 2020
- 600 MHz already deployed in more than 1,250 cities and towns in 33 states

5G MOBILE HOTSPOTS

- Launching 5G mobile service in 12 cities by end of 2018
- Additional major 5G launches in 2019

FIXED WIRELESS

- Launched commercial
 Fixed Wireless 5G in 4
 cities in October 2018
- Followed by additional 5G launches in 2019 including 5G mobile service

MASSIVE MIMO

- Launching 5G on 2.5GHz
- 9 cities to be launched in first half 2019
- Followed by additional 5G launches

All operators are moving towards 5G Everyone has different starting points No one has clear spectrum across all bands for 5G today

Source: 5G Americas, Chairman-Neville Ray

5G + AI + BC - Future Services and role of PA

- The future services (all !) need 5G + AI + BC
 - Driven by reliable and valuable user data;
 - Managed by complex AI algorithms;
 - Empowered by 5G communication networks
 - Relying upon the «trust infrastructure»: the Blockchain
- The role of Public Administration
 - New rules for infrastructure **«roll-out»** (permits, em pollution)
 - Clear and <u>predictable spectrum strategy</u> («spectrum review»)
 - Strong demand side policy (smart roads, e-health, public goods management, process digitalization)
 - New rules to guarantee an Equitable acces to 5G networks, Network (Cyber) Security and Algorithm Accountability
 - <u>Funding Basic Research</u> and Research Projects
 - Promote Experiments (Challenges) on real life (PA?) problems

Focus: Internet of Things

IEEE COMMUNICATIONS SURVEYS & TUTORIALS (DRAFT)

Towards Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions

Shree Krishna Sharma, Senior Member, IEEE, and Xianbin Wang, Fellow, IEEE

- IOT already «alive and kicking»
 - Unlicensed LPWA (technology and base stations owned by operators):
 - SigFox (868MHz, 915 MHz), LoRA (< 1Ghz), Ingenu (2.4 GHz)
 - Licensed LTE-M(achine) (Rel. 10 13 3GPP)
 - eMTC (CAT-M1) NB-IOT
- LTE M is structurally unfit for mIOT (relies on 4G Networks)
 - Medium Access Congestion (millions of «things» requiring attention)
 - Signalling **Overhead** (Data Trasmitted ≈ Control traffic)
 - Highly centralised data processing and no edge computing
 - Designed for complex UE with «hungry» batteries

Why LTE-M is not enough?

IEEE COMMUNICATIONS SURVEYS & TUTORIALS (DRAFT)

Fig. 2. Challenges of existing cellular networks to support emerging massive machine-type communications.

Why 5G is the key enabler for IOT ?

Collaborative Advanced edge-cloud transmission processing Flexible scheduling waverforms techniques Dynamic Low signalling resource overhead MAC 5G mMTC allocation protocols schemes - AI parameter setting - AI Clustering Enablers for mMTC Advanced in cellular IoT spectrum Compressive networks sharing sensing based Data Aggregation technique MUD – > 1M users per Km² Constant Clustering MAC Collision Minimization envelope and data based aggregation – Adv. Spectrum Sharing modulation Advanced RA schemes like SDN and schemes such CPM as NoMA, CRA virtualization techniques SCMA and DQCA

The transition from LTE-M (eMTC) to mMTC should be «smooth»

Coming Soon ... The Role of Artificial Intelligence

CanStockPhoto.com - csp55750957

Thanks for your attention!