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Motivation: The rapid growth of CVEs—projected to exceed 50,000 new
entries In 2025——creates a major challenge for timely vulnerability
management. While 5G-specific CVEs are still emerging, their
complexity demands specialized expertise and rapid identification.
Traditional methods like keyword filtering and manual review are too
slow and error-prone to keep up. An automated, domain-aware
solution is needed to classify 5G-related vulnerabilities as soon as they
are published, without exposing sensitive data outside the
organization.

Approach: We dataset and systematically tested locbuilt a manually
annotated 5G-specific CVE al large language models (LLMs) for
automated classification. Our evaluation progressed from simple
baselines to advanced prompt-engineering strategies, including few-
shot learning, context enrichment (via embeddings), and reasoning-
based approaches. This enables efficient, privacy-preserving
classification that leverages LLMs’ natural language understanding and
cross-domain knowledge.

1. Pipeline

} oG keywords } Manually analyze } Complete
Mitre CVE filter and annotate Ground Truth
Database
Compare result and <Prompt>
metrics across different €«—— LLM Classification <€—— <CVE summary> <—
models and techniques <CPEs>

2. Ground Truth
* Filter CVEs based on 5g keywords
* 136 CVE, manually annotated by three domain experts, covering
2014-2024.
* Binary classification:
« Bg: Vulnerabilities affecting 5G core network functions,
components, or 5G-specific protocols.
* nodg: Vulnerabilities related to general networks, applications, or

Infrastructure not specific to 5G. E JEt E
* Ground Truth is available at Zenodo, scan the QR code. ->
* Run multiple local LLM with different size (3B-70B). Eﬂ-@i
* Different prompt engineering techniques:
 PBaseline (B): uses only CVE description and CPEs if present.
* Few-shots (FS): provides two output example to the baseline prompt.
* Web context enrichment using LLM (CL) or embeddings (CE): Enriches
the prompt context with information gathered from CVE associated
references. Useful Iinformation are summarized using either an
embedding model or the LLM Iitself.
* Reasoning or CoTl (R): Asks the model to make some reasoning before
giving the answer or enables reasoning mode when available.
* FEvaluated Accuracy, Precision, Recall, F1-score and Mattews
Correlation Coefficient (MCC) across different models and

techniques. MCC is particularly suited for binary classification since
It balances true/false positives and negatives.
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3. LLM evaluation
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4. Results

 Baseline metrics improvement with increasing parameter size.

* Performance plateau observed beyond ~14B parameters, with
limited gains from scaling.

» Steadyrecall across the models.

* No significant improvement using different prompt engineering
technigues with higher parameter size.

* Embedding-based enrichment is especially effective for small and
mid-size models.

* Prompt sensitivity, results may vary significantly by changing the
prompt.
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Baseline strategy, metrics by model size.
Model B (%) FS CL CE R
Llama-3B-Q4 46.7 +0.7 +3.0 +12.9 +6.9
Gemma-E4B-Q4 54.3 +9.1 +2.3 +5.6 +7.8
Mistral-7B-Q4 31.6 +6.1 +2.7 +6.7 -3.95
Llama-8B-Q4 76.8 +2.1 +5.7 +8.8 +1.6
Gemma-3-12B 88.6 -2.4 -6.2 -3.9 -1.8
SecGPT-14B 76.0 +12.6 +0.6 +7.2 +9.1
Gemma-27B-Q4 01.2 -7.9 +0.3 +4.4 +3.0
Qwen3-32B-Q4 94.2 +0.0 +1.4 -3.1 +0.1
Llama3-70B 94.2 -2.9 -2.9 -4.3 +1.4
MCC metric by model and strategy (in bold the highest increase per row).

5. Future Works

* Expand dataset and refine annotations (more categories).

* Explore fine-tuning of LLMs on 5G CVEs.

* Mitigate prompt sensitivity and
quantization/temperature.

* More comprehensive model performance analysis.

explore robustness of
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