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5. Future Works
• Expand dataset and refine annotations (more categories).
• Explore fine-tuning of LLMs on 5G CVEs.
• Mitigate prompt sensitivity and explore robustness of 

quantization/temperature.
• More comprehensive model performance analysis.
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4. Results
• Baseline metrics improvement with increasing parameter size.
• Performance plateau observed beyond ~14B parameters, with 

limited gains from scaling.
• Steady recall across the models.
• No significant improvement using different prompt engineering 

techniques with higher parameter size.
• Embedding-based enrichment is especially effective for small and 

mid-size models.
• Prompt sensitivity, results may vary significantly by changing the 

prompt.

3. LLM evaluation
• Run multiple local LLM with different size (3B-70B).
• Different prompt engineering techniques:
• Baseline (B): uses only CVE description and CPEs if present.
• Few-shots (FS):  provides two output example to the baseline prompt.
• Web context enrichment using LLM (CL) or embeddings (CE): Enriches 

the prompt context with information gathered from CVE associated 
references. Useful information are summarized using either an 
embedding model or the LLM itself.

• Reasoning or CoT (R): Asks the model to make some reasoning before 
giving the answer or enables reasoning mode when available.

• Evaluated Accuracy, Precision, Recall, F1-score and Mattews 
Correlation Coefficient (MCC) across different models and 
techniques. MCC is particularly suited for binary classification since 
it balances true/false positives and negatives.

Motivation: The rapid growth of CVEs—projected to exceed 50,000 new 
entries in 2025—creates a major challenge for timely vulnerability 
management. While 5G-specific CVEs are still emerging, their 
complexity demands specialized expertise and rapid identification. 
Traditional methods like keyword filtering and manual review are too 
slow and error-prone to keep up. An automated, domain-aware 
solution is needed to classify 5G-related vulnerabilities as soon as they 
are published, without exposing sensitive data outside the 
organization.
Approach: We dataset and systematically tested locbuilt a manually 
annotated 5G-specific CVE al large language models (LLMs) for 
automated classification. Our evaluation progressed from simple 
baselines to advanced prompt-engineering strategies, including few-
shot learning, context enrichment (via embeddings), and reasoning-
based approaches. This enables efficient, privacy-preserving 
classification that leverages LLMs’ natural language understanding and 
cross-domain knowledge.

2. Ground Truth
• Filter CVEs based on 5g keywords
• 136 CVE, manually annotated by three domain experts, covering 

2014–2024.
• Binary classification:
• 5g: Vulnerabilities affecting 5G core network functions, RAN 

components, or 5G-specific protocols.
• no5g: Vulnerabilities related to general networks, applications, or 

infrastructure not specific to 5G.
• Ground Truth is available at Zenodo, scan the QR code. ->

1. Pipeline

MCC metric by model and strategy (in bold the highest increase per row).
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Baseline strategy, metrics by model size.

Model B (%) FS CL CE R
Llama-3B-Q4 46.7 +0.7 +3.0 +12.9 +6.9
Gemma-E4B-Q4 54.3 +9.1 +2.3 +5.6 +7.8
Mistral-7B-Q4 81.6 +6.1 +2.7 +6.7 -3.55
Llama-8B-Q4 76.8 +2.1 +5.7 +8.8 +1.6
Gemma-3-12B 88.6 -2.4 -6.2 -3.9 -1.8
SecGPT-14B 76.0 +12.6 +0.6 +7.2 +9.1
Gemma-27B-Q4 91.2 -7.9 +0.3 +4.4 +3.0
Qwen3-32B-Q4 94.2 +0.0 +1.4 -3.1 +0.1
Llama3-70B 94.2 -2.9 -2.9 -4.3 +1.4
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